If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+4n-24=0
a = 5; b = 4; c = -24;
Δ = b2-4ac
Δ = 42-4·5·(-24)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{31}}{2*5}=\frac{-4-4\sqrt{31}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{31}}{2*5}=\frac{-4+4\sqrt{31}}{10} $
| 19x-15x+x-4x=12 | | 2(3x-7)=2 | | 2+5z=10 | | 3x+12=-x+80 | | 8=r/4 | | 19x-15x+x-x=12 | | |x-3|+5=12 | | 5/6(6-4x)=-18 | | 2(7z=7)=14 | | 104=8q | | d÷3=-10 | | m*18=54 | | (4x-16)=64 | | 2x(100/3-4/3x)=100 | | 0.80x+-0.25x+-2=6.5 | | 0.4x-18=3x-16-0.8x | | 51/3+y=9 | | 2/3x-5/6=7/8 | | 7z-5z=18 | | 15x+30x=180 | | 4(7x/3=68/3) | | 6(6y+6)-5=1 | | 7(c−0.75)=2.8 | | 10-3(x+3)=7 | | 2(x-1)-3x=5x+-11 | | f*12=72 | | 4x-3=-9+7x | | 234324324324x=23232312 | | .5x=1/3 | | 3.5k=5.75 | | 5/2+6/x=3/4 | | 33-7w+6(w=4) |